Abstract:
This research is backgrounded by the level of road damage that occurs on the Isimu - Paguyaman road so that the need for handling so that the transportation route runs smoothly. This study aims to analyze and determine the thickness of the overlay layer (overlay) using the 2017 Road Pavement Design Manual (MDP 2017) method with the Benkelman beam test tool, which is carried out on the Isimu - Paguyaman Road section (STA 17 + 100 - STA 18 + 100). Based on the results of the study, the overlay thickness was obtained from the results of traffic volume analysis by taking into account the CESAL value for 10 years of planning age of 11,476,966 ESA 4 for 10 years of planning age of 19,233,188.4 ESA4 and CESAL value of 5. The difference in the results of calculating the CESAL value is due to the determination of equivalent numbers and different VDF values in each calculation. Overlay thickness based on the method of the 2017 Road Pavement Design Manual obtained a minimum AC-WC thickness of 11.23 cm by using an overlay thickness solution graph based on maximum characteristic deflection.

Keywords: Benkelman beam; overlay; road pavement design manual 2017; CESA

INTRODUCTION
Road damage can have a significant impact on the comfort and safety of passing road users (Rangkuti, 2016). Based on data from the Central Statistics Agency (2019) during the 2015-2019 period, the number of traffic accidents increased by an average of 4.87% per year (Zainafree et al., 2022). The increase in the number of accidents was also accompanied by the number of deaths and minor injuries, namely 1.41% and 6.26% per year respectively (Indonesia, 2018). Apart from that, damage can also cause delays in the process of distributing goods and services, thereby impacting regional development (Pratama & Koesyanto, 2020). Therefore, a solution is needed in the form of a road preservation program in the form of road maintenance components to extend the service
life of the road. One of the pavement maintenance jobs is adding layer thickness work (overlay) which aims to increase the strength of the existing pavement structure so that it can serve the planned traffic during the future period (Tuna, 2016).

Visually, the pavement on Jalan Isimu - Paguyaman has some damage, such as reflection cracks, grooves on the asphalt pavement, peeling of the surface layer. In general, the functional condition of the Jalan Isimu - Paguyaman section has experienced a decline in pavement quality. This happens because Jalan Isimu - Paguyaman is one of the arterial roads in Gorontalo City which is often used by various types of light to heavy transportation. This is also the basis for this research to plan the design of added layer thickness using the 2017 Road Pavement Design Manual method with a deflection test tool benkelman beam.

Based on the background description, a problem formulation of how thick the added layer can be drawn can be formulated (overlay) needed to overcome the problem of decreasing pavement quality on the Isimu - Paguyaman Road section using the 2017 Road Pavement Design Manual (MDP 2017) method with testing equipment benkelman beam. (Ahlak, 2022) (Pradani et al., 2016).

The aim of this research is to analyze road pavement strengthening or additional layer thickness (overlay) with the 2017 manual method of road pavement design using a back deflection test tool Benkelman Beam.

RESEARCH METHODS

A. Research sites

In this research, a case study was taken in Gorontalo Province on the Isimu – Paguyaman road section, at STA 17+100 – 18+100 (1 Km long) which is an arterial road with type 2 lanes 2 directions (2/2 UD) with a time of 1 Sunday

Figure 3. Research sites

A. Data collection method

This research uses 2 types of research data, namely primary data and secondary data:

1) Data Primer: Primary data is data obtained through survey observations in the field. The primary data obtained is deflection testing with tools benkelman beam. Testing was carried out on June 15 2021 at 13:00 WITA for a distance of 1 km on the Jalan Isimu - Paguyaman section with a total of 5 testing points. With temperature data obtained from direct measurements using a temperature measuring device/thermometer. During deflection testing, the temperature data obtained is in the form of:

- \[T_P = \text{Pavement Surface Temperature Data} \, (^\circ C) \]
- \[T_{IN} = \text{Air Temperature Data} \, (^\circ C) \]

2) Data Seconds: Secondary data is data obtained from related agencies. In this case, it is the Gorontalo Province National Road Implementation Agency (BPJN). The data required is daily traffic data (LHR).

B. Tools used

1) Truck with standard specifications (Figure 2):

2) The Benkelman beam apparatus consists of two rods with a total length of (366 ± 0.16) cm (Figure 4):
C. Data analysis

After obtaining back deflection data and daily traffic data (LHR), both data were analyzed using the 2017 Road Pavement Design Manual (MDP 2017) method. The stages in analyzing these two data include:

1) Determining the life of the plan:
2) Calculating traffic volume:
3) Calculating transport standard axle loads (CESAL):
4) Determining handling triggers:
5) Determine the type of surface layer:
6) Determine the thickness of the added layer (overlay):

D. Stages Study

![Stages Study Flow Chart](image)

RESULTS AND DISCUSSION

A. Traffic Volume Analysis Results

Results from field survey data obtained from the Gorontalo Province National Road Implementation Center for overlay thickness design purposes. Based on the data obtained, it can be seen the number of transportation groups per day during 2022, consisting of group 1 (motorbikes), groups 2, 3, 4 (sedans, jeeps, public transportation, st wagons), groups 5A and 5B (small and large buses). Groups 6A and 6B (2-axle trucks), groups 7A, 7B and 7C (3-axle trucks), and
class 8 (non-motorized transportation) which pass along Jalan Isimu – Paguyama.

Table 2

Traffic Data Analysis

<table>
<thead>
<tr>
<th>NO</th>
<th>TRANSPORTATION TYPE</th>
<th>LHR 2021</th>
<th>LHR 2023</th>
<th>VDF 4<sub>FACTUL</sub> AL</th>
<th>VDF 4<sub>FORM</sub> AL</th>
<th>VDF 5<sub>FACTUL</sub> AL</th>
<th>VDF 5<sub>FORM</sub> AL</th>
<th>ESA 4<sub>FACTUL</sub> AL</th>
<th>ESA 4<sub>FORM</sub> AL</th>
<th>THAT 4<sub>FACTUL</sub> L</th>
<th>THAT 4<sub>FORM</sub> AL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Motorbikes, scooters, 3 wheels</td>
<td>1557</td>
<td>1557</td>
<td>31156</td>
<td>4.75%</td>
<td>34186</td>
<td>3581</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Semi/Angkot/Pick up / Station Wagon</td>
<td>748</td>
<td>7488</td>
<td>14976</td>
<td>4.75%</td>
<td>16433</td>
<td>1721</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>- Small bus</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>4.75%</td>
<td>4</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>- Big Bus</td>
<td>22</td>
<td>22</td>
<td>4</td>
<td>4.75%</td>
<td>48</td>
<td>51</td>
<td>1.20</td>
<td>1.20</td>
<td>1.30</td>
<td>1.30</td>
</tr>
<tr>
<td>5</td>
<td>- Light cargo 2 axle truck</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4.75%</td>
<td>0.50</td>
<td>0.50</td>
<td>0.40</td>
<td>0.40</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>6</td>
<td>- Light 2 axle truck</td>
<td>23</td>
<td>23</td>
<td>4</td>
<td>4.75%</td>
<td>50</td>
<td>53</td>
<td>0.50</td>
<td>0.50</td>
<td>0.40</td>
<td>0.40</td>
</tr>
<tr>
<td>7</td>
<td>- Medium cargo 2 axle truck</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4.75%</td>
<td>2.40</td>
<td>0.90</td>
<td>0.80</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>8</td>
<td>- General load heavy 2 axle trucks</td>
<td>114</td>
<td>1148</td>
<td>2296</td>
<td>4.75%</td>
<td>251</td>
<td>263</td>
<td>4</td>
<td>9</td>
<td>4.00</td>
<td>0.80</td>
</tr>
<tr>
<td>9</td>
<td>- Heavy 2 axle trucks (soil, sand, iron, cement)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4.75%</td>
<td>2.40</td>
<td>0.90</td>
<td>0.80</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>10</td>
<td>- 3 axle truck</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4.75%</td>
<td>9.20</td>
<td>2.10</td>
<td>16.10</td>
<td>2.40</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>11</td>
<td>- Medium 3 axle truck</td>
<td>64</td>
<td>64</td>
<td>128</td>
<td>4.75%</td>
<td>140</td>
<td>147</td>
<td>13.80</td>
<td>4.40</td>
<td>26.80</td>
<td>5.60</td>
</tr>
<tr>
<td>12</td>
<td>- Heavy 3 axle truck</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4.75%</td>
<td>13.80</td>
<td>4.40</td>
<td>26.80</td>
<td>5.60</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>13</td>
<td>- 2 axle truck and 2 axle trailer</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4.75%</td>
<td>13.80</td>
<td>4.40</td>
<td>26.80</td>
<td>5.60</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>14</td>
<td>- Semi Trailer 4 axis</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4.75%</td>
<td>16.70</td>
<td>6.40</td>
<td>29.10</td>
<td>8.10</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>15</td>
<td>- Semi Trailer 5 axis</td>
<td>63</td>
<td>63</td>
<td>126</td>
<td>4.75%</td>
<td>138</td>
<td>145</td>
<td>16.80</td>
<td>5.90</td>
<td>31.30</td>
<td>7.40</td>
</tr>
<tr>
<td>16</td>
<td>- Semi Trailer 6 axis</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4.75%</td>
<td>31.90</td>
<td>5.00</td>
<td>64.40</td>
<td>5.90</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>17</td>
<td>- Non-motorized vehicles</td>
<td>31</td>
<td>31</td>
<td>62</td>
<td>4.75%</td>
<td>68</td>
<td>71</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| AMOUNT | 9469 | 3963 | 18241 | 4093 |

B. Cumulative Equivalent Single Axle Load Calculation Results

Mark vehicle damage factor 4th power obtained values of 1.20, 0.5, 2.4 and 0.9 for transport classes 5B to 6B, while for 5th power obtained 1.3, 0.4, 4.7 and 0.80. These two VDF values will later be used in the CESAL calculation\(^4\) and CESAL\(^5\).
C. CESAL Calculation Analysis

Table 4
Recapitulation of CESA Values4 and CESA5

<table>
<thead>
<tr>
<th>Section Name</th>
<th>Road Classification</th>
<th>Year of Traffic Survey</th>
<th>Design Year</th>
<th>Year of Construction</th>
<th>Years of Service</th>
<th>Traffic Growth</th>
<th>CESA 4 (10 Years)</th>
<th>CESA 5 (10 Years)</th>
<th>CESA 4 (20 Years)</th>
<th>CESA 5 (20 Years)</th>
<th>CESA 4 (40 Years)</th>
<th>CESA 5 (40 Years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linguistics – Paguyaman</td>
<td>Arteries</td>
<td>2021</td>
<td>2022</td>
<td>2023</td>
<td>2024</td>
<td>0.0475</td>
<td>16414645.4</td>
<td>23582921.5</td>
<td>30719303.2</td>
<td>38355442.2</td>
<td>89658670.1</td>
<td>99222540.6</td>
</tr>
</tbody>
</table>

D. Analysis Results of Layer Thickness Adding Flexible Pavement (Overlay)

1) Determination of Planned Age: Determining the design life is the first stage in designing the thickness of the overlay layer. The design age is determined based on traffic load criteria obtained from CESAL calculations4 overlay. This is road quality improvement work, therefore the appropriate planning age is 10 years.

2) Election Pavement Structure: To determine the choice of pavement structure, the CESAL calculation must first be carried out4 first. Based on the results of CESAL calculations4 CESAL value is obtained4 $16,42 \times 10^6$ then adjusted to Table 2.7. Based on Table 2.7 CESAL value4 falls into the value range of 0.1 to 4 with the normal AC-BC pavement structure type being the main option for selecting the pavement structure.

3) Trigger Deflection for Overlay and Reconstruction: Based on Appendix 5 trigger and reconstruction deflections, the CESAL value is obtained5 > 1 to 2 ESAs5 which is adjusted to the CESAL value5 The result obtained is 23.59×10^6 year/year. Then the type of surface layer, namely AC or HRS, is obtained from selecting the pavement structure, with the trigger deflection for overlay (trigger deflection 1) and the trigger deflection for the reconstruction investigation (trigger deflection 2) are > 1.16 and > 1.50 mm which are adjusted to the results of the Benkelman beam corrected return deflection curve of 1.252 mm.

Determining Overlay Thickness:
Determination of overlay thickness is determined based on Figure 2.1 for overlay solutions based on reverse deflection Benkelman beam which has been corrected. The way to determine this is by...
entering the maximum characteristic deflection value and the ESA design traffic load, the overlay thickness is obtained on the vertical axis. The results of the overlay thickness are shown in Figure 6.

Figure 6. Thick overlay results
- Based on the average IRI value, namely 8 with an overlay thickness = 6.00 cm
- Based on Fatigue Examination Pd-T-05-2005 = 14.46
- Based on graphs Figure 6.1, 6.3 & 6.4 Overlay Return Deflection BB = 0.00

Based on Figure 4.2, the thickness of the overlay used on Jalan Isimu - Paguyaman (STA 17+100 - STA 18+100) is 140 mm which is converted to 14 cm with AC-WC = 6 cm and AC-BC = 8 cm

CONCLUSION

Based on the research results, it can be concluded that the overlay thickness cannot be determined using the overlay solution graph based on the maximum characteristic deflection and ESA traffic load for rutting criteria. Paguyaman is 140 mm or 14 cm with details AC-WC = 6 cm and AC-BC = 8 cm.

BIBLIOGRAPHY

Anugrah, Adnan, Hamka

Copyright holder:
Anugrah, Adnan, Hamka (2023)

First publication right:
Asian Journal of Engineering, Social and Health (AJESH)

This article is licensed under:
[CC BY 4.0](https://creativecommons.org/licenses/by/4.0/)